Utilizing high-throughput sequencing to identify plant pathogens

Richard Hogue, researcher

Richard Hogue

Researcher, Ph.D.

418 643-2380
ext 420

Contact Richard Hogue

Luc Belzile

Description

This project aims to evaluate and develop a high-throughput sequencing-based diagnostic procedure to

  • provide an accurate assessment of its pathogen recognition capability in comparison with conventional diagnostic approaches;
  • develop processes adapted for both diagnosis and detection that are rapid, accurate, and cost-effective;
  • develop an intuitive Web interface to provide for rapid and easy data interpretation, and
  • allow for the knowledge transfer and validation of the high-throughput sequencing diagnostic strategy and the integration of a specialized and tested database that will increase data processing speed via a Web interface.

This innovative diagnostic approach will significantly contribute to the development and adoption of diagnostic methods that rely on high-throughput sequencing, thereby simplifying the diagnosis process.

Objective(s)

  • Demonstrate that this technique allows for the simultaneous, rapid, and accurate identification of pathogenic organisms responsible for major diseases in field crops, potatoes, and market garden crops.
  • Produce an accurate assessment of its pathogen recognition capability.
  • Establish procedures adapted to both diagnosis and detection that are rapid, accurate, and cost-effective.
  • Develop an intuitive Web interface to provide for rapid and easy data interpretation.

From 2019 to 2023

Project duration

Market gardening

Activity areas

Soil health

Service

DNA sequencing can be used to inventory all the organisms living in a soil sample.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Centre de recherche du CHU de Québec-Université Laval | Centre de recherche sur les grains

This may interest you

2016-2017 • Market gardening

Improving irrigation management with accurate measurements of effective precipitation

The project consisted of manufacturing and testing a portable rain simulator to estimate, under various conditions, what proportion of irrigation water a crop is able to use.

Researcher: Carl Boivin

Read more about the project

Carl Boivin

Quantitative and qualitative water management in crops

Designing and teaching a course for agricultural consultants.

Researcher: Carl Boivin

Read more about the project

Carl Boivin
2018-2020 • Market gardening

Evaluating the effect of seeds coated with commercial, mycorrhizal fungi inoculum on the yields of nantes carrots grown in mineral soil early in the organic transition process

Test whether or not commercial strains coated on Nantes carrot seeds can compete with native strains in the soil to colonize the host plant and, once symbiosis takes place, whether they succeed in doing a better job than the native strains during the transition to organic farming.

Researcher: Christine Landry

Read more about the project

Christine Landry
F