Exclusion nets made from biobased polymers

Gérald Chouinard, researcher

Gérald Chouinard

Researcher, agr., Ph.D.

450 653-7368
ext 340

Contact Gérald Chouinard
Daniel Cormier, researcher

Daniel Cormier

Researcher, Ph.D.

450 653-7368
ext 360

Contact Daniel Cormier

Description

The purpose of this project is to test the general hypothesis that biobased polymers can be used to replace fossil-fuel-based products to make better exclusion nets for protecting fruit and vegetable crops from pests and disease and further reduce the use of pesticides without increasing GHG emissions.

Objective(s)

  • Evaluate the potential for using a biopolymer to make exclusion nets for protecting high-value fruits and vegetables
  • Characterize the physical and chemical properties of candidate biopolymers
  • Improve the ability of nets made of biopolymers to exclude pests by modifying their surfaces at the nanometric (diseases) and millimetric (insects) levels

From 2017 to 2019

Project duration

Fruit production

Activity areas

Pest, weed, and disease control

Service

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation | Dubois Agrinovation | Polytechnique Montréal | McGill University

Publications

This may interest you

2019-2020 • Fruit production

Using apple maggot mass trapping with attracticidal spheres to cut back on insecticide applications in orchards

This project seeks to reduce the use of chemical insecticides in orchards by controlling apple maggot populations using mass trapping.

Researcher: Daniel Cormier

Read more about the project

Daniel Cormier
2018-2023 • Fruit production

Environmentally sound management of the Spotted Wing Drosophila

This project will formulate multiple independent, but potentially synergistic, strategies to control Spotted Wing Drosophila.

Researcher: Annabelle Firlej

Read more about the project

Annabelle Firlej
2015-2019 • Fruit production

Sound water management for lowbush blueberries under fluctuating and changing climatic conditions

Using sound irrigation management to control frost and water stress in lowbush blueberry helps stabilize yield while minimizing environmental impacts.

Researcher: Carl Boivin

Read more about the project

Carl Boivin
F