Exclusion nets made from biobased polymers

Gérald Chouinard, researcher

Gérald Chouinard

Researcher, agr., Ph.D.

450 653-7368
ext 340

Contact Gérald Chouinard
Daniel Cormier, researcher

Daniel Cormier

Researcher, Ph.D.

450 653-7368
ext 360

Contact Daniel Cormier

Description

The purpose of this project is to test the general hypothesis that biobased polymers can be used to replace fossil-fuel-based products to make better exclusion nets for protecting fruit and vegetable crops from pests and disease and further reduce the use of pesticides without increasing GHG emissions.

Objective(s)

  • Evaluate the potential for using a biopolymer to make exclusion nets for protecting high-value fruits and vegetables
  • Characterize the physical and chemical properties of candidate biopolymers
  • Improve the ability of nets made of biopolymers to exclude pests by modifying their surfaces at the nanometric (diseases) and millimetric (insects) levels

From 2017 to 2019

Project duration

Fruit production

Activity areas

Pest, weed, and disease control

Service

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation | Dubois Agrinovation | Polytechnique Montréal | McGill University

Publications

This may interest you

2015-2016 • Fruit production

Productivity of healthy looking plants that have never received nitrogen fertilizer and that are located in a blueberry field infected by stunt disease

In highbush blueberry fields where stunt disease has been detected, plants that have never received nitrogen fertilizer are more vigorous and homogeneous than plants that have received nitrogen fertilizer.

Read more about the project

Carl Boivin
Christine Landry
2017-2020 • Fruit production

Impact of tree growth and rain on fungicide efficacy against apple scab

The aim of this project is to determine the combined impact on fungicide efficacy of rain and the appearance of new leaves to more accurately identify how long treatments remain effective.

Researcher: Vincent Philion

Read more about the project

Vincent Philion
2019-2021 • Fruit production

Assessing the effectiveness of HARVANTA (cyclaniliprole) in controlling major cranberry pests

This project’s aim is to evaluate the effectiveness of HARVANTA® 50SL to control the cranberry weevil, the blackheaded fireworm and the cranberry fruitworm.

Researcher: Annabelle Firlej

Read more about the project

Annabelle Firlej