Control strategies for swede midge in organic production

Description

The swede midge has been the main pest of crucifers (cabbage family) in Québec since 2003. Its presence throughout the season, the difficulty of detecting the damage it causes, and its cryptic behaviour make controlling this pest very complicated. Organic producers currently rely on pest exclusion nets, which are expensive to use. It is important, therefore, to develop other effective ways of controlling this pest.

Objective(s)

  • Evaluate effective and economically viable control strategies for swede midge that are healthy for both humans and the ecosystem
  • Evaluate swede midge control strategies in organic crucifer production based on data already available in Québec, other Canadian provinces, the U.S., and elsewhere in the world.

From 2014 to 2018

Project duration

Market gardening

Activity areas

Pest, weed, and disease control, Organic farming

Services

This work will lead to the development of a strategy to help control the cauliflower plant’s most formidable insect pest.

Partner

Growing Forward 2

This may interest you

Beetroots
2013-2018 • Market gardening

NPK fertilizer trials for beets on mineral soils in Québec

This project was aimed at determining the nutrient needs of beets based on soil texture and phosphorus and potassium levels under Québec growing conditions.

Researcher: Christine Landry

Read more about the project

Christine Landry
Farm - Ìle d'Orléans

Île d’Orléans farmers rally to tackle water shortage

This project aims to explore and experiment new approaches and ways to preserve, develop, and enhance the MRC’s bio-food sector, and reduce or eliminate the water deficit on the island.

Read more about the project

Carl Boivin
Stéphane Godbout
Potato field
2019-2022 • Market gardening

Developing a soil microbiome monitoring method to select potato crop management practices that reduce soil-borne pathogens and pesticide applications

Method to monitor and control telluric pathogens affecting potatoes that takes into account the interactions between these pathogens and other soil microbiome organisms.

Researchers: Richard Hogue Luc Belzile

Read more about the project

Richard Hogue
Luc Belzile