Banded controlled-release and conventional fertilizer in horticultural production under plastic mulch

Carl Boivin

Researcher, agr., M.Sc.

418 643-2380
ext 430

Contact Carl Boivin
Christine Landry, researcher

Christine Landry

Researcher, agr., Ph.D.

418 643-2380
ext 640

Contact Christine Landry

Description

The aim of this project was to field-test sound irrigation practices and band application of various types of fertilizers at ridging time to eliminate fertigation and increase the efficiency of fertilizer and water use under plastic mulch.

Objective(s)

  • Field-test the results of six years of research on:
    • Sound irrigation management
    • Band application of conventional and slow release fertilizers at ridging
  • Eliminate fertigation

From 2016 to 2018

Project duration

Fruit production, Market gardening

Activity areas

, Fertilizer management

Services

This project demonstrated that growers can eliminate fertigation through the use of slow-release fertilizers.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Prime-Vert Program | Ferme François Gosselin | Ferme Maurice et Philippe Vaillancourt | Polyculture Plante 1987 | Ferme Jean-Pierre Plante | Ferme Onésime Pouliot | Réseau de lutte intégrée Orléans

This may interest you

2017-2020 • Fruit production

Impact of tree growth and rain on fungicide efficacy against apple scab

The aim of this project is to determine the combined impact on fungicide efficacy of rain and the appearance of new leaves to more accurately identify how long treatments remain effective.

Researcher: Vincent Philion

Read more about the project

Vincent Philion
2016-2017 • Fruit production

Posters on integrated fruit production for strawberry, raspberry, and highbush blueberry crops

IRDA produced posters to help producers and extension agents choose pest and disease control strategies that promote the use of IPM.

Researcher: Annabelle Firlej

Read more about the project

Annabelle Firlej
2017-2018 • Fruit production

Analyzing sap flow to assess water absorption dynamics in apple trees

The hypothesis was that it should be possible to measure sap flow in apple trees and correlate it with soil water conditions and the weather.

Researcher: Carl Boivin

Read more about the project

Carl Boivin
F