Using organic matter and biostimulants to restore soil health and yields in matted row strawberry fields with a history of decline – yields in the second year of production

Christine Landry, researcher

Christine Landry

Researcher

418 643-2380
ext 640

Contact Christine Landry

Description

This was a companion project to a study started in 2015 in a matted row strawberry field with a history of decline. The objective was to check whether organic matter (compost and organic fertilizer) inputs or biostimulants (compared to mineral fertilizers alone) can improve soil health and result in more vigorous plants less susceptible to decline. The initial two-year study covered the year the strawberries were planted (2015) and the first year of fruit production (2016). As funds for the initial project were limited, “classic” disease monitoring was used. However given the results in year 1 and thanks to additional funding, the second year of production (2017) was included in the study. This allowed us to test the potential effects of the treatments on soil and plant health and productivity as it enabled us to apply the biostimulants two years in a row rather than just once. The organic matter added at planting also had an additional year to interact with the soil. Compost in particular is known for its long term effect because it decomposes more slowly than organic matter that is less resistant to mineralization, such as pelleted chicken manure. The disease aspect was also studied in more depth. State-of-the-art biotech analysis tools developed and made available by IRDA’s microbial ecology lab were used to analyze the abundance and diversity of beneficial and pathogenic microorganisms on plants and in the soil in both production years. Inclusion of the second year of production also enabled a more robust and comprehensive economic analysis.

Objective(s)

  • Examine whether improving soil health can help check strawberry decline
  • More specifically, verify the impact of adding compost and organic fertilizers at planting time and applying biostimulants every year on:
    • Microbial diversity in the soil and the rhizosphere
    • Incidence of plant disease
    • Yields in the second year of fruit production
  • The project will enable researchers to determine whether commercial biostimulants are effective and worth buying—an important consideration given their high cost—or whether on-farm soil amendments and organic fertilizers give as good or better results three years after their application.

From 2017 to 2018

Project duration

Fruit production

Activity areas

Soil health, Fertilizer management

Services

This project assesses the effects of commercial products.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Réseau de lutte intégrée Bellechasse | Ferme Marivil

This may interest you

Blueberry farm
2019-2020 • Fruit production

Investigating key physicochemical and environmental factors that could account for variable lowbush blueberry yields

As part of this project, the soil water status at a chosen blueberry farm will be monitored at 40 spots over the course of the production year. We will seek to identify the relationship between water extraction, physicochemical and environmental factors, and yield levels that could help explain yield variability.

Researcher: Carl Boivin

Read more about the project

Carl Boivin
Fungicide spraying

Assessing the economic impact of fungicide resistance in horticultural corps

Project initiated to review the knowledge on the fungicide resistance of various pathogens to provide a preliminary assessment of the economic impacts of fungicide resistance.

Researcher: Luc Belzile

Read more about the project

Luc Belzile
Apple Leafculing Midge
2014-2017 • Fruit production

Variable economic injury for the apple leafcurling midge and modelling of population abundance of this emerging pest

The apple leafcurling midge is a new apple pest in Québec. The aim of the project is to explore the pest’s phenology, establish variable economic injury thresholds, and incorporate the results into a phenology model in CIPRA.

Researcher: Daniel Cormier

Read more about the project

Daniel Cormier