Using organic matter and biostimulants to restore soil health and yields in matted row strawberry fields with a history of decline – yields in the second year of production

Christine Landry, researcher

Christine Landry

Researcher

418 643-2380
ext 640

Contact Christine Landry

Description

This was a companion project to a study started in 2015 in a matted row strawberry field with a history of decline. The objective was to check whether organic matter (compost and organic fertilizer) inputs or biostimulants (compared to mineral fertilizers alone) can improve soil health and result in more vigorous plants less susceptible to decline. The initial two-year study covered the year the strawberries were planted (2015) and the first year of fruit production (2016). As funds for the initial project were limited, “classic” disease monitoring was used. However given the results in year 1 and thanks to additional funding, the second year of production (2017) was included in the study. This allowed us to test the potential effects of the treatments on soil and plant health and productivity as it enabled us to apply the biostimulants two years in a row rather than just once. The organic matter added at planting also had an additional year to interact with the soil. Compost in particular is known for its long term effect because it decomposes more slowly than organic matter that is less resistant to mineralization, such as pelleted chicken manure. The disease aspect was also studied in more depth. State-of-the-art biotech analysis tools developed and made available by IRDA’s microbial ecology lab were used to analyze the abundance and diversity of beneficial and pathogenic microorganisms on plants and in the soil in both production years. Inclusion of the second year of production also enabled a more robust and comprehensive economic analysis.

Objective(s)

  • Examine whether improving soil health can help check strawberry decline
  • More specifically, verify the impact of adding compost and organic fertilizers at planting time and applying biostimulants every year on:
    • Microbial diversity in the soil and the rhizosphere
    • Incidence of plant disease
    • Yields in the second year of fruit production
  • The project will enable researchers to determine whether commercial biostimulants are effective and worth buying—an important consideration given their high cost—or whether on-farm soil amendments and organic fertilizers give as good or better results three years after their application.

From 2017 to 2018

Project duration

Fruit production

Activity areas

Soil health, Fertilizer management

Services

This project assesses the effects of commercial products.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Réseau de lutte intégrée Bellechasse | Ferme Marivil

This may interest you

Spotted Wing Drosophila
2018-2023 • Fruit production

Environmentally sound management of the Spotted Wing Drosophila

This project will formulate multiple independent, but potentially synergistic, strategies to control Spotted Wing Drosophila.

Researcher: Annabelle Firlej

Read more about the project

Annabelle Firlej
Strawberries
2015-2017 • Fruit production

Effects of various irrigation strategies on nutrient uptake in organically grown June-bearing strawberries grown in beds covered with black plastic mulch

The project was conducted at IRDA’S Organic Agriculture Innovation Platform. Strawberries (Cleary cultivar) were produced in beds covered with black plastic mulch.

Researcher: Carl Boivin

Read more about the project

Carl Boivin
Cranberries
2016-2018 • Fruit production

Adapting fruit crop pest and disease control to climate change

The goal of this project was to document the impact of climate change on fruit crop pests and diseases in Québec.

Researcher: Annabelle Firlej

Read more about the project

Annabelle Firlej