Using cesium-137 to quantify organic horticultural soil erosion

Claude Bernard

Associate Researcher, Ph.D.

Contact Claude Bernard
Marc-Olivier Gasser, researcher

Marc-Olivier Gasser

Researcher, agr., Ph.D.

418 643-2380
ext 650

Contact Marc-Olivier Gasser

Description

Organic horticultural soils lose anywhere from 0.3 to 4 cm of viable topsoil each year that does not regenerate. The main degradation processes involve microbial decomposition, compaction (50%), and erosion (50%). Not much is known, however, about the actual magnitude of the loss due to erosion. The measurement of the spatial redistribution of cesium-137 (Cs-137) provides a rapid and efficient means to quantify this loss. We will measure this radioisotope in 28 fields exposed to different atmospheric agents and subject to a variety of anti-erosion practices in order to quantify the long-term (60+ years) severity of erosion for these soil types.

Objective(s)

  • Use Cs-137 to quantify the total erosion of organic soils that has taken place in 28 fields since the early 1960s.
  • Compare the erosion rates calculated by the Cs-137 methodology with rates obtained by other means currently in use.
  • Help develop an integrated approach to the conservation of organic horticultural soils.

From 2019 to 2023

Project duration

Market gardening

Activity areas

Soil health

Service

This project will help bring about improvements in black peat conservation.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Université Laval

This may interest you

2016-2017 • Market gardening

Improving irrigation management with accurate measurements of effective precipitation

The project consisted of manufacturing and testing a portable rain simulator to estimate, under various conditions, what proportion of irrigation water a crop is able to use.

Researcher: Carl Boivin

Read more about the project

Carl Boivin

A status report on the labile carbon to total organic carbon ratio of Saguenay–Lac-St-Jean soils

A labile carbon input would displace some phosphorus into the soil solution, thus making it available again for assimilation into growing plants.

Researcher: Christine Landry

Read more about the project

Christine Landry
2018-2020 • Market gardening

Evaluating the effect of seeds coated with commercial, mycorrhizal fungi inoculum on the yields of nantes carrots grown in mineral soil early in the organic transition process

Test whether or not commercial strains coated on Nantes carrot seeds can compete with native strains in the soil to colonize the host plant and, once symbiosis takes place, whether they succeed in doing a better job than the native strains during the transition to organic farming.

Researcher: Christine Landry

Read more about the project

Christine Landry
F