Using cesium-137 to quantify organic horticultural soil erosion

Claude Bernard

Associate Researcher, Ph.D.

Contact Claude Bernard
Marc-Olivier Gasser, researcher

Marc-Olivier Gasser

Researcher, agr., Ph.D.

418 643-2380
ext 650

Contact Marc-Olivier Gasser

Description

Organic horticultural soils lose anywhere from 0.3 to 4 cm of viable topsoil each year that does not regenerate. The main degradation processes involve microbial decomposition, compaction (50%), and erosion (50%). Not much is known, however, about the actual magnitude of the loss due to erosion. The measurement of the spatial redistribution of cesium-137 (Cs-137) provides a rapid and efficient means to quantify this loss. We will measure this radioisotope in 28 fields exposed to different atmospheric agents and subject to a variety of anti-erosion practices in order to quantify the long-term (60+ years) severity of erosion for these soil types.

Objective(s)

  • Use Cs-137 to quantify the total erosion of organic soils that has taken place in 28 fields since the early 1960s.
  • Compare the erosion rates calculated by the Cs-137 methodology with rates obtained by other means currently in use.
  • Help develop an integrated approach to the conservation of organic horticultural soils.

From 2019 to 2023

Project duration

Market gardening

Activity areas

Soil health

Service

This project will help bring about improvements in black peat conservation.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Université Laval

This may interest you

2016-2017 • Market gardening

Adapting quantitative detection methods for determining silver scurf injury thresholds both in the soil and on seed potatoes to model potential economic losses

The fungal pathogen Helminthosporium solani causes silver scurf, a disease that is hard to detect, both in the soil and on harvested potatoes.

Researcher: Richard Hogue

Read more about the project

Richard Hogue
2013-2018 • Market gardening

NPK fertilizer trials for beets on mineral soils in Québec

This project was aimed at determining the nutrient needs of beets based on soil texture and phosphorus and potassium levels under Québec growing conditions.

Researcher: Christine Landry

Read more about the project

Christine Landry
2019-2022 • Market gardeningField crops

Including perennial fodder crops as “cut and carry” nitrogen sources in long-term rotations of organically grown potatoes and field crops

We will compare the ability of mixed protocols using blended green manure, with or without the addition of farm manure, to satisfy the nitrogen requirements of a silage corn rotation crop.

Researcher: Christine Landry

Read more about the project

Christine Landry
F