Exploring the potential of thermal imaging data acquired by drone for the detection of water stress in lowbush blueberries

Carl Boivin, researcher

Carl Boivin

Researcher

418 643-2380
ext 430

Contact Carl Boivin

Description

The principle behind thermal imaging is based on the fact that plants under water stress have a lower transpiration rate and a higher canopy temperature than plants well supplied with water. Canopy temperatures captured by drone can be used to quickly evaluate water stress in crops like lowbush blueberries and guide decisions as to whether irrigation is required.

Objective(s)

  • Explore the potential of detecting water stress in lowbush blueberries using a thermal infrared imaging sensor installed on a drone

From 2017 to 2018

Project duration

Fruit production

Activity areas

Optimal water management

Service

IRDA has recognized expertise in precision farming.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Institut national de la recherche scientifique

This may interest you

High plastic tunnel
2018-2021 • Fruit production

Developing new shelter systems adapted to organic raspberry production that reduce pest infestations and boost crop productivity and profitability

Design and validation of a new generation of high tunnels with automatic retractable roofs, new roofing materials, and screens that will extend the harvest season.

Researcher: Annabelle Firlej

Read more about the project

Annabelle Firlej
Cranberry fruitworm, Photo credit : Laboratoire d'expertise et de diagnostic en phytoprotection - MAPAQ
2019-2021 • Fruit production

Using mating disruption to control black headed fireworm and cranberry fruitworm

Development of a mating disruption method to control two cranberry pests.

Researcher: Daniel Cormier

Read more about the project

Daniel Cormier
DNA molecules
2019-2023 • Fruit production

A new molecular approach to simultaneously detect disease-causing viruses in raspberries and strawberries

Developing a fast and sensitive molecular detection methodology able to accurately identify raspberry and strawberry viruses.

Researchers: Richard Hogue Luc Belzile

Read more about the project

Richard Hogue
Luc Belzile