A study on the relationship between thermal imaging data collected by drone and agrometerological indicators of water stress in potato crops

Carl Boivin

Researcher, agr., M.Sc.

418 643-2380
ext 430

Contact Carl Boivin

Description

Thermal infrared remote sensing (TIRS) has already shown strong potential for detecting water stress in crops. Although TIRS sensors installed on drones could replace those on satellites, they are not yet widely used.

The aim of this project was to study the relationship between thermal imaging data collected by drone and agrometerological indicators of water stress in potato crops to develop water stress indicators that can be measured by drone.

These indicators can be used to optimize irrigation in potato crops by enabling growers to apply the right amounts of water at the right times in the right places.

Objective(s)

  • Study the relationship between thermal imaging data collected by drone and agrometerological indicators of water stress in potato crops to develop water stress indicators that can be measured by drone

2017

Project duration

Market gardening

Activity areas

Optimal water management

Service

With precision farming, farmers can provide the right amount of irrigation at the right times and in the right places.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Institut national de la recherche scientifique | Ferme Victorin Drolet

This may interest you

2019-2023 • Market gardening

Using cesium-137 to quantify organic horticultural soil erosion

Project to quantify the long-term (60+ years) severity of erosion of organic horticultural soils.

Read more about the project

Claude Bernard
Marc-Olivier Gasser
2017-2019 • Market gardening

Validating microbial indicators of potato field productivity based on metagenomic analysis

The current project is designed to check the predictability of the biological productivity score.

Researcher: Richard Hogue

Read more about the project

Richard Hogue
2019-2022 • Market gardening

Developing mass trapping strategies to control the striped cucumber beetle in organic cucurbit farming

This project aims to develop mass trapping strategies to keep damage caused by the striped cucumber beetle populations below the economic threshold, while minimizing the capture of pollinators and natural enemies.

Read more about the project

Annabelle Firlej
Maxime Lefebvre