Validation of soil health indicators as a nitrogen uptake prediction tool

Christine Landry, researcher

Christine Landry

Researcher, agr., Ph.D.

418 643-2380
ext 640

Contact Christine Landry

Description

The purpose of this project is to establish a link between soil health and biological (respiration, nitrogen, and functional groups [genomic and PCR]), physical (aggregation and compaction), and chemical criteria used in the Cornell soil health assessment. The objective is to develop a prediction model for soil nitrogen supplies based on biological soil health indicators.

An accurate estimate of soil nitrogen would enable growers to reduce mineral fertilizer applications for the same crop yields, which would have a direct impact on input costs and reduce nitrogen leaching into the environment. The tests are being conducted on grain corn because it is a nitrogen-hungry crop and has a strong impact on soil quality.

Objective(s)

  • Correlate soil health parameters with crop yields and the soil’s ability to supply nitrogen
  • Develop a predictive model of soil nitrogen availability based on biological parameters used in the Cornell, Haney, and biological function tests
  • Transfer the predictive models and analytical methods to industry stakeholders, i.e., advisory groups and soil analysis labs

From 2017 to 2020

Project duration

Field crops

Activity areas

Fertilizer management

Service

Accurate estimates of soil nitrogen supply can be used to reduce mineral fertilizer applications.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | EnvironeX Group

This may interest you

2016-2018 • Field crops

Impact of integrated pest management on the profitability of field crop farms

This project was aimed at evaluating the impact of integrated pest management on the profitability of field crop farms.

Researcher: Luc Belzile

Read more about the project

2021-2023 • Field crops

LandCoM: Land cover mapping


The LandCoM project aims to develop an automated method for evaluating by remote sensing the percentage of soil cover by crop residues and cover crops.

Researcher: Simon Ricard

Read more about the project

Simon Ricard
2015-2018 • Field crops

Developing a nitrogen fertilization program based on green manure supplemented by a manure-based starter fertilizer in organic grain production

In a wheat/grain corn/soya rotation, green manure can be used to obtain profitable organic grain corn yields while limiting phosphorus pollution.

Researcher: Christine Landry

Read more about the project

Christine Landry
F