Developing new techniques to control water table levels in sphagnum farming

Stéphane Godbout

Researcher, P.Eng., agr., Ph.D.

418 643-2380
ext 600

Contact Stéphane Godbout

Description

It has been shown that maintaining the water table close to the soil surface helps sphagnum moss grow and reduces CO2 emissions from sphagnum farms. The objective of this project was to develop effective techniques for controlling water table levels in sphagnum moss basins. Underground irrigation systems were installed at a number of experimental sites. The effectiveness of the systems was evaluated by monitoring water levels at different locations in the sphagnum basins.

Objective(s)

  • Determine optimal parameters for designing underground irrigation systems
  • Evaluate the behavior of water table levels and determine key control parameters for maintaining an ideal moisture level in the sphagnum mat
  • Develop a basic moisture balance strategy to allow automation of the irrigation system

From 2013 to 2017

Project duration

Field crops

Activity areas

Water protection, Optimal water management

Services

This project will help reduce CO2 emissions from peatlands.

Partners

Association des producteurs de tourbe horticole du Québec | Université Laval

This may interest you

2018-2019 • Field cropsLivestock production

Cost-benefit analysis of proposed actions to reduce the phosphorus load entering Missisquoi Bay from the Rivière de la Roche watershed

The Rivière de la Roche sub-watershed has one of the highest phosphorus and sediment export rates of the entire Missisquoi Bay watershed—a particularly challenging situation for the local agricultural sector.

Researchers: Aubert Michaud, retraité Luc Belzile

Read more about the project

Aubert Michaud, retraité
2016-2018 • Field crops

Impact of integrated pest management on the profitability of field crop farms

This project was aimed at evaluating the impact of integrated pest management on the profitability of field crop farms.

Researcher: Luc Belzile

Read more about the project

2018-2019 • Field crops

Improving the efficiency of rainwater and irrigation use in the potato cropping system

This project proposes an intervention in a typical potato cropping system to enhance the crop uptake of water and nitrogen.

Researcher: Carl Boivin

Read more about the project

Carl Boivin